## (intel) lowards an emotional engagement model: Can affective states of a learner be automatically detected in a 1:1 Learning Scenario?

Nese Alyuz<sup>1</sup>, Eda Okur<sup>1</sup>, Ece Oktay<sup>1</sup>, Utku Genc<sup>1</sup>, Sinem Aslan<sup>1</sup>, Sinem Emine Mete<sup>1</sup>, David Stanhill<sup>1</sup>, Bert Arnrich<sup>2</sup>, Asli Arslan Esme<sup>1</sup>

Presenter: Mustafa Kocaturk<sup>1</sup>

<sup>1</sup> INTEL CORPORATION <sup>2</sup> BOGAZICI UNIVERSITY



Can machines understand learner engagement just like a teacher and enable personalized learning experience?



"Everybody is a genius. But if you judge a fish by its ability to climb a tree, it will live its whole life believing that it is stupid." Albert Einstein

Picture: http://weknowmemes.com/tag/please-climb-that-tree/



#### Adaptive Learning System





#### **Generic Emotional Engagement Detection**



\* S. Aslan, S. E. Mete, E. Okur, E. Oktay, N. Alyuz, U. Genc, D. Stanhill, and A. Arslan Esme, "Human Expert Labeling Process (HELP): Towards a reliable higher-order user state labeling by human experts", in *Int. Conf. on Intelligent Tutoring Systems (ITS) – Workshops*, 2016.



#### **Feature Extraction**

#### Sliding windows of 8-seconds, with 4-seconds overlaps

| Modality                     | Feature Group                                                  | Number of<br>Features | Examples                                                                               |  |  |  |
|------------------------------|----------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------|--|--|--|
|                              | Head pose and position                                         | 128                   | median of absolute head center acceleration, standard deviation of head position, etc. |  |  |  |
| Appearance .                 | Facial expressions                                             | 32                    | Number of right-eye raisers per segment, mean of smile, etc.                           |  |  |  |
|                              | Seven basic emotions                                           | 28                    | Mean of anger intensity, number of joyful segments, etc.                               |  |  |  |
| -<br>Context-<br>Performance | Time related6Time from beginning, video/attempt duration, etc. |                       |                                                                                        |  |  |  |
|                              | Trial related                                                  | 3                     | Trial number, number of trials until success, etc.                                     |  |  |  |
|                              | Hint related 5 Number of hints used on a                       |                       | Number of hints used on attempt or question, etc.                                      |  |  |  |
|                              | Grade related                                                  | 7                     | Grade, correct attempt percentage, etc.                                                |  |  |  |
|                              | Other                                                          | 3                     | Gender, question number from beginning, etc.                                           |  |  |  |



### **Data Collection**

• Setup:

Authentic classroom pilots with 9<sup>th</sup> grade students Optionally offered math course through a public online math learning tool **Instructional** (watching videos) vs. **Assessment** (solving exercises) sections

• Data:

17 one-hour sessions (twice a week), 17 studentsHuman Expert Labeling Process (HELP)\* with 8 labelers (5 labelers per instance)210 hours of data

\* S. Aslan, S. E. Mete, E. Okur, E. Oktay, N. Alyuz, U. Genc, D. Stanhill, and A. Arslan Esme, "Human Expert Labeling Process (HELP): Towards a reliable higher-order user state labeling by human experts", in *Int. Conf. on Intelligent Tutoring Systems (ITS) – Workshops*, 2016.



#### **Experiments**

- Aim: Need for model personalization
- **Experimental Data:** Using data of nine students (attended sessions twice a week)
- Experiments: Generic vs. Adapted vs. Personal Emotional Engagement Model

|             | Offline Data Collection Phase | Online Usage Phase      |  |  |  |
|-------------|-------------------------------|-------------------------|--|--|--|
|             | INITIAL TRAINING<br>SET       | SUBJECT SPECIFIC<br>SET |  |  |  |
|             | Generic Model*                |                         |  |  |  |
|             | Adapted Model                 |                         |  |  |  |
| * Leave-One | Subject-Out                   | Personal Model          |  |  |  |



### **Classifier Setup**

- Training/Test separation: 80% vs. 20% of subject specific data
- Balanced training sample counts for different classes (10-fold)
- Separate *Random Forests* classifiers for:
  - Different modalities: Appearance | Context-Performance
  - Different section types: Instructional | Assessment
- **F1 measure** as the performance criteria:

 $F_1 = 2 \frac{\text{Precision } * \text{Recall}}{\text{Precision} + \text{Recall}}$ 

| Instru | ctioi             | nai |  |
|--------|-------------------|-----|--|
|        |                   |     |  |
| Sati   | sfied             |     |  |
|        | $\mathbf{\Sigma}$ |     |  |
|        |                   |     |  |
|        |                   |     |  |
| Bored  |                   |     |  |



Intel Corporation - Intel Labs



8

### **Classification Results**



|           | GENERIC MODEL    |                |              | ADAF             | TED MO         | DEL          | PERSONAL MODEL   |                |              |
|-----------|------------------|----------------|--------------|------------------|----------------|--------------|------------------|----------------|--------------|
| Classes   | Avg.<br>Tr. Size | Appr.<br>(%F1) | C-P<br>(%F1) | Avg.<br>Tr. Size | Appr.<br>(%F1) | C-P<br>(%F1) | Avg.<br>Tr. Size | Appr.<br>(%F1) | C-P<br>(%F1) |
| Unknown   | 967              | 10.73          | 9.62         | 1018             | 24.85          | 72.97        | 51               | 33.04          | 85.38        |
| Satisfied | 967              | 61.04          | 55.76        | 2273             | 87.63          | 96.12        | 1305             | 89.65          | 97.18        |
| Bored     | 967              | 44.93          | 39.68        | 1542             | 70.91          | 93.33        | 575              | 73.54          | 94.41        |
| OVERALL   | 2901             | 55.79          | 49.50        | 4833             | 85.44          | 96.13        | 1931             | 89.30          | 97.32        |

#### ASSESSMENT



|           | GENERIC MODEL    |                |              | ADAPTED MODEL    |                |              | PERSONAL MODEL   |                |              |
|-----------|------------------|----------------|--------------|------------------|----------------|--------------|------------------|----------------|--------------|
| Classes   | Avg.<br>Tr. Size | Appr.<br>(%F1) | C-P<br>(%F1) | Avg.<br>Tr. Size | Appr.<br>(%F1) | C-P<br>(%F1) | Avg.<br>Tr. Size | Appr.<br>(%F1) | C-P<br>(%F1) |
| Unknown   | 1886             | 33.53          | 27.94        | 2211             | 47.21          | 72.02        | 324              | 49.48          | 72.75        |
| Satisfied | 1886             | 60.58          | 76.32        | 2884             | 83.43          | 94.04        | 997              | 83.79          | 94.39        |
| Confused  | 1886             | 17.12          | 46.59        | 2044             | 37.64          | 82.05        | 158              | 44.04          | 85.01        |
| OVERALL   | 5658             | 48.12          | 63.41        | 7139             | 75.25          | 90.24        | 1479             | 76.37          | 90.89        |



## Conclusion & Future Work

Findings:

- Appearance is more informative for instructional sections
- Performance-related features makes C-P modality more representative
- Information included in both modalities are person-specific
- Appearance requires more person-specific data

Next?

- Assessment of personalization with self-labels
- New personalization strategies minimizing the need for self-labels
- Fusion of different modalities



10

# Thank YOU

For further questions and comments, please contact **Nese Alyuz** at <u>nese.alyuz.civitci@intel.com</u>

Intel Corporation - Intel Labs



#### F1 Measure

• **F1 measure** as the performance criteria

 $F_1 = 2 \frac{\text{Precision } * \text{Recall}}{\text{Precision } + \text{Recall}}$ 

